Home  |   Search  |   Contact  |   Conditions  |   Business Solutions  |   About

Create Account   |   Login

Join the world community for sharing Business Info !
 Already have an account ?  Login
Manufacturing of glass and glassware

The most prevalent type of glass, used for centuries in windows and drinking vessels, is soda-lime glass, made of about 75% silica (SiO2) plus Na2O, CaO, and several minor additives. Often, the term glass is used in a restricted sense to refer to this specific use.

In science, however, the term glass is usually defined in a much wider sense, including every solid that possesses a non-crystalline (i.e. amorphous) structure and that exhibits a glass transition when heated towards the liquid state. In this wider sense, glasses can be made of quite different classes of materials: metallic alloys, ionic melts, aqueous solutions, molecular liquids, and polymers. Of these, polymer glasses (acrylic glass, polyethylene terephthalate) are the most important; for many applications (bottles, eyewear) they are a lighter alternative to traditional silica glasses.

Glass, as a substance, plays an essential role in science and industry. Their chemical, physical, and in particular optical properties make them suitable for applications such as flat glass, container glass, optics and optoelectronics material, laboratory equipment, thermal insulator (glass wool), reinforcement materials (glass-reinforced plastic, glass fiber reinforced concrete), and glass art (art glass, studio glass

Moldavite, a natural glass formed by meteorite impact, from Besednice, Bohemia
Roman Cage Cup from the 4th century A.D.
Oldest mouth-blown window-glass in Sweden (Kosta Glasbruk, 1742). In the middle is the mark from the glassblower’s pipe.

Glass is an amorphous (non-crystalline) solid material. Glasses are typically brittle, and often optically transparent.

Glass ingredients

Quartz sand (silica) is the main raw material in commercial glass production
A modern greenhouse in Wisley Garden, England, made from float glass

New chemical glass compositions or new treatment techniques can be initially investigated in small-scale laboratory experiments. The raw materials for laboratory-scale glass melts are often different from those used in mass production because the cost factor has a low priority. In the laboratory mostly pure chemicals are used. Care must be taken that the raw materials have not reacted with moisture or other chemicals in the environment (such as alkali oxides and hydroxides, alkaline earth oxides and hydroxides, or boron oxide), or that the impurities are quantified (loss on ignition). Evaporation losses during glass melting should be considered during the selection of the raw materials, e.g., sodium selenite may be preferred over easily evaporating SeO2. Also, more readily reacting raw materials may be preferred over relatively inert ones, such as Al(OH)3 over Al2O3. Usually, the melts are carried out in platinum crucibles to reduce contamination from the crucible material. Glass homogeneity is achieved by homogenizing the raw materials mixture (glass batch), by stirring the melt, and by crushing and re-melting the first melt. The obtained glass is usually annealed to prevent breakage during processing.

In order to make glass from materials with poor glass forming tendencies, novel techniques are used to increase cooling rate, or reduce crystal nucleation triggers. Examples of these techniques include aerodynamic levitation (cooling the melt whilst it floats on a gas stream), splat quenching (pressing the melt between two metal anvils) and roller quenching (pouring the melt through rollers).
Network glasses

A CD-RW (CD). Chalcogenide glasses form the basis of re-writable CD and DVD solid-state memory technology.





 


From Wikipedia, the free encyclopedia : Manufacturing of glass and glassware
If you like to see your banner here please go to  Business Solutions